I share real-world lessons from building scalable systems at Binance, and running mission-critical cloud ops at GovTech and Singapore Air Force. No fluff, just practical takeaways, hard-earned fixes, and deep dives that matter.
Why: Improves code discoverability and auto-documentation
Use Type Hints
# Baddef add(a, b): return a + b# Gooddef add(a: int, b: int) -> int: return a + b
Why: Improves code clarity and enables static analysis
Keyword Arguments over Positional Arguments for Optional Parameters
# Baddef create_user(name, age, is_admin=False): ...create_user("Alice", 30, True)# Good (Use keyword for clarity and flexibility)def create_user(name, age, is_admin=False): ...create_user("Alice", 30, is_admin=True) # An admincreate_user("Alice", 30) # Not an Admin
Why: Improves readability and reduces errors, especially when functions have multiple optional parameters. Keyword arguments make the intent clearer and future-proof the code when defaults or parameter order change
Avoid Magic Numbers or Strings
# Badif status == 3: ...# GoodPENDING_APPROVAL = 3if status == PENDING_APPROVAL: ...
Why: Increases readability and maintainability
Use Comprehensions
# Badsquares = []for x in range(10): squares.append(x * x)# Goodsquares = [x * x for x in range(10)]
Why: More concise and expressive
Avoid Excessive Nesting
# Baddef check(user): if user: if user.active: if user.has_permission(): return True return False# Gooddef check(user): if not user or not user.active or not user.has_permission(): return False return True
Why: Reduces indentation and improves clarity
Limit Function Responsibility
# Baddef process(data): # does 10 things pass# Gooddef validate(): ...def store(): ...def notify(): ...
Why: Improves testability and separation of concerns
Use get() with Dicts to Avoid Errors
# Badname = user['name'] # returns KeyError if name not found# Goodname = user.get('name') # returns None if name not found
Why: Prevents KeyError exception if key is missing