Abstract
Universal Modus Ponens
| Case 1 |
---|
Premise 1 | ∀x(P(x)→Q(x)) |
Premise 2 | P(a) |
Conclusion | Q(a) |
Universal Modus Tollens
| Case 1 |
---|
Premise 1 | ∀x(P(x)→Q(x)) |
Premise 2 | ¬Q(a) |
Conclusion | ¬P(a) |
Universal Transitivity
| Case 1 |
---|
Premise 1 | ∀x(P(x)→Q(x)) |
Premise 2 | ∀x(Q(x)→R(x)) |
Conclusion | ∀x(P(x)→R(x)) |
Existential Instantiation
∃x∈D,P(x)
∴P(a) for some a∈D
Universal Instantiation
- If some property is true of everything in the set, then it is true of any particular thing in the set
- Core tool for deductive reasoning
∀x∈D,P(x)
∴a∈D→P(a)